skip to main content


Search for: All records

Creators/Authors contains: "Richards‐Zawacki, Corinne L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis

    Recent strides toward improving diversity, equity, and inclusion (DEI) in field biology present a unique opportunity for transdisciplinary exploration of the impacts and state of a topic that has remained hereto largely underexplored and under-discussed in the academic setting. Within current literature, themes of racial and gender inequity, power imbalances, unsafe environments, and underdeveloped infrastructure and resources are widespread. Thus, we organized a symposium that addressed these compelling issues in field biology DEI through a multitude of experiential and academic lenses. This article will orient the reader to the special issue and offer summative goals and outcomes of the symposium that can provide tangible steps toward creating meaningful improvements in the state of DEI and safety in field settings.

     
    more » « less
  2. ABSTRACT Environmental challenges early in development can result in complex phenotypic trade-offs and long-term effects on individual physiology, performance and behavior, with implications for disease and predation risk. We examined the effects of simulated pond drying and elevated water temperatures on development, growth, thermal physiology and behavior in a North American amphibian, Rana sphenocephala. Tadpoles were raised in outdoor mesocosms under warming and drying regimes based on projected climatic conditions in 2070. We predicted that amphibians experiencing the rapid pond drying and elevated pond temperatures associated with climate change would accelerate development, be smaller at metamorphosis and demonstrate long-term differences in physiology and exploratory behavior post-metamorphosis. Although both drying and warming accelerated development and reduced survival to metamorphosis, only drying resulted in smaller animals at metamorphosis. Around 1 month post-metamorphosis, animals from the control treatment jumped relatively farther at high temperatures in jumping trials. In addition, across all treatments, frogs with shorter larval periods had lower critical thermal minima and maxima. We also found that developing under warming and drying resulted in a less exploratory behavioral phenotype, and that drying resulted in higher selected temperatures in a thermal gradient. Furthermore, behavior predicted thermal preference, with less exploratory animals selecting higher temperatures. Our results underscore the multi-faceted effects of early developmental environments on behavioral and physiological phenotypes later in life. Thermal preference can influence disease risk through behavioral thermoregulation, and exploratory behavior may increase risk of predation or pathogen encounter. Thus, climatic stressors during development may mediate amphibian exposure and susceptibility to predators and pathogens into later life stages. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  3. Chang, Belinda (Ed.)
    Abstract

    Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  4. Abstract

    The field of ecology has undergone a molecular revolution, with researchers increasingly relying on DNA‐based methods for organism detection. Unfortunately, these techniques often require expensive equipment, dedicated laboratory spaces and specialized training in molecular and computational techniques; limitations that may exclude field researchers, underfunded programmes and citizen scientists from contributing to cutting‐edge science.

    It is for these reasons that we have designed a simplified, inexpensive method for field‐based molecular organism detection—FINDeM (Field‐deployableIsothermalNucleotide‐basedDetectionMethod). In this approach, DNA is extracted using chemical cell lysis and a cellulose filter disc, followed by two body‐heat inducible reactions—recombinase polymerase amplification and a CRISPR‐Cas12a fluorescent reporter assay—to amplify and detect target DNA, respectively.

    Here, we introduce and validate FINDeM in detectingBatrachochytrium dendrobatidis, the causative agent of amphibian chytridiomycosis, and show that this approach can identify single‐digit DNA copies from epidermal swabs in under 1 h using low‐cost supplies and field‐friendly equipment.

    This research signifies a breakthrough in ecology, as we demonstrate a field‐deployable platform that requires only basic supplies (i.e. micropipettes, plastic consumables and a UV flashlight), inexpensive reagents (~$1.29 USD/sample) and emanated body heat for highly sensitive, DNA‐based organism detection. By presenting FINDeM in an ecological system with pressing, global biodiversity implications, we aim to not only highlight how CRISPR‐based applications promise to revolutionize organism detection but also how the continued development of such techniques will allow for additional, more diversely trained researchers to answer the most pressing questions in ecology.

     
    more » « less
  5. Abstract

    Infectious disease systems frequently exhibit strong seasonal patterns, yet the mechanisms that underpin intra‐annual cycles are unclear, particularly in tropical regions. We hypothesized that host immune function fluctuates seasonally, contributing to oscillations in infection patterns in a tropical disease system. To test this hypothesis, we investigated a key host defense of amphibians against a lethal fungal pathogen,Batrachochytrium dendrobatidis(Bd). We integrated two field experiments in which we perturbed amphibian skin secretions, a critical host immune mechanism, in Panamanian rocket frogs (Colostethus panamansis). We found that this immunosuppressive technique of reducing skin secretions in wild frog populations increasedBdprevalence and infection intensity, indicating that this immune defense contributes to resistance toBdin wild frog populations. We also found that the chemical composition and anti‐Bdeffectiveness of frog skin secretions varied across seasons, with greater pathogen inhibition during the dry season relative to the wet season. These results suggest that the effectiveness of this host defense mechanism shifts across seasons, likely contributing to seasonal infection patterns in a lethal disease system. More broadly, our findings indicate that host immune defenses can fluctuate across seasons, even in tropical regions where temperatures are relatively stable, which advances our understanding of intra‐annual cycles of infectious disease dynamics.

     
    more » « less
  6. Abstract

    As human activities alter environmental conditions, the emergence and spread of disease represents an increasing threat to wildlife. Studies that examine how host–pathogen relationships play out across seasons and latitudes can serve as proxies for understanding how natural and anthropogenic changes in climate may influence infection and disease dynamics. Amphibians are ideal host organisms for studying the impacts of climate on disease because they are ectothermic and threatened by chytridiomycosis, a recently emerged and globally important disease caused by fungal pathogens in the genusBatrachochytrium. Previous studies suggest that temperature affects the interaction between amphibians andBatrachochytriumpathogens. However, a clearer understanding of this host–pathogen–environment interaction is needed to predict how the risk of chytridiomycosis will vary in space and time. Here, we investigate how daily, seasonal, and latitudinal variations in temperature affect the incidence and impact ofBatrachochytrium dendrobatidis(Bd) infection in a broadly distributed host, the northern cricket frog (Acris crepitans), using a combination of field and laboratory studies. In a four‐year field study conducted at three latitudes, we found that daily maximum air temperature over a 15‐d period prior to sampling best predicted patterns ofBdinfection and that the lightest infection loads followed periods when these temperatures exceeded 25°C. In a laboratory exposure experiment, we found pathogen load and mortality to be greater at temperatures that mimic winter temperatures at the southern extent of this host's range than for scenarios that mimic temperature conditions experienced in other areas and seasons. Taken together, our findings suggest that changes in temperature across timescales and latitudes interact to influence the dynamics of infection and disease in temperate amphibians.

     
    more » « less